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SUMMARY

A simple, direct procedure is developed for converting frequency-domain

aerodynamics into indicial aerodynamics. The data required for aerodynamic
forces in the frequency domain may be obtained from any available (linear)

theory. The method retains fleKibilJty for the analyst and is based upon the

particular character of the frequency-domain results. An evaluation of the

method is made for incompressible, subsonic, and transonic two-dimensional flows.

I_rRODUCTION

For many years, unsteady aerodynamic theories and applications have f_cusod

primarily on the frequency domain since the aerodynamic calculation is simpli-

fied if the motion of an airfoil or lifting surface is restricted to be simple

harmonic (refs. I and 2). However, for applications to aeroelastic systems with

feedback control and for aeroelastic systems with structural n¢_nlinearities, it

is of considerable value to represent the aerodynamic forces ir the time domain.

For an aerodynamic theory which is linear in the motion o| the aeroelastic

system, there is a fundamental correspondence between the frequency and time

domains through a Fourier transform pair (refs. ] to 3). Such a linear theory

may still include important physical effects such as shock wave motions in the

transonic r_gime which are sometimes, incorrectly, thought of as being invari-

ably nonlinear. In principle, if the aerodynamic forces are _nown at a suffi-

cient number of frequencies, a numerical inversion to the ti_-domain represen-

tatlon _s always possible. Such an inversion is rarely practical, however,

because the aerodynamic forces are only known at a relatively small number of

frequencies. Instead, a parameter identification approach is usually employed

whereby time histories of aerodynamic forces are assumed te be sums of exponen-

tials. The time constants and coefficients are chosen to give a best fit to

the frequency representation of the aerodynamic forces which has been obtained

numerically by some appropriate aerodynamic solution procedure.

Suzh representations in the time domain date from the early work of Jones L

(ref. 4) and extend to the recent interesting work of Roger (refs. 5 and 6) L

and Vepa (ref. 7). Roger employs a particularly straightforward procedure for

determining his representations while Vepa uses Pade approximants and a least-

squares method. Abel (ref. 8) and Dunn (ref. 9) have subsequently improved upon

these methods. It is the purpose here to develop a simple, systematic _rocedure

for time-domain representations which retains flexibility for the analyLt and i_

based upon the particular character of the frequency-domain results. _ evalua-

tion of the method is made for incompressible, subsonic, and transonic two-

dimensional flows. No difficulty is anticipated in using the method for three-

dimensional flows where results are available for the frequency representation

of the aerodynamics. Finally, although not emphasized here, the general proce-

dures may be useful when it is desired to convert from time-domaln representa-

tions t:O frequency-domain representations. Such applications might arise when
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finite-difference aerodynamic calculations lead directly to time-domain results

(ref. 10). Marc H. Wil]iams, of Pr_ncPton UniversJty_ p|ovidPd the frPqtlPnc_'-

domain data used in th_ compressib]e-flow examples.

SYMBOLS

ai coefficients of ex_-onential time representation

b airfoil half-chord

bi exponents of ek1_onential time representation

C Theodorsen function

CL lift coefficient

CL_ lift coefficient due to heaving

CL_ lift coefficient due to pitching

CM moment coefficient

CM_ moment coefficient due to heavina

CMu moment coefficient due to pitching

D _nominator in polynomial representation of Theodorsen function

F real part of Theodorsen function

G imaginary part of Theodorsen function

h heaving displacement

I total number of terms in sum

i (_])]/2; also, index for summation

k reduced frequency, _|b/U

L lift

M Mach number

N numerator in polynomial representation of Theodorsen function

t time

U free-stream velocity

u angle of attack; also, angle of pitch

2
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¢ fluid density

t dimensional time, Ut,'b

Waqner function

_c,_(_m transient aerodynamic functions

frequency

Super:,cr i pt :

PT p_ ston t_leor y

Su_cripts.

I imaginary part

I¢ real pa_ t
L

max maximum

A bar over a symb._ der,ot_s Fourier transform; a dot over a s}_mbol denotes

derivativ_ with respect to time.

B_.g I C APPR(_CH

For deflniteness, eonsidJer s,lme aerodynamic generalized foroe, say CL,

due to sQme step change in a motion variable, say _/U. "_'hus,

h/U = I (t > 0) (la)

h U _ 0 (t < 0) (Ib)

Assume C L may be reI_esented by

I

_ b_

CL = ale _ (I " 0) (2a) "

CL = 0 , (_ - 0) (2b)

where the ai, b i are yet to he _etermined but it is anticipated that b i < O.

Taking the Fourier transform of equatlc.n_ (1) and (2),

]

1980024850-004



I

= (])

_'U __ (-bi * ik_
i=I

where a bar above a quantity _tes Fc_ri_ _ransfocm and k is the transfocs
variable. Taklng the real and ilag_nary parts of equation (3),

CL\ I Ii V ,ibi

At this point, there are two important questions:

(I) Is a representation such as equation (3) or equations (4) capable of

matching the known behavior to arbitrary accuracy by increasing the number of

terms retained in the series? This question is answered in the affirmative by
numerical examples _d, in the special case of inocapressible flow, the ana-

lytical results of Desmarais (ref. 11).

(2) How can ai,bi De determined conveniently, simply, and unambiguously?

Vepa has suggested a (modified) least-squares procedure for determining ai

and bi Here a simpler pzocedure is used. The bi are detelmined by the

#-- T_,

extre_a of CI'/hI; then the a i are determined by a least-squares fit to the

/- -!

frequency-domain data fo_ \CL/_ I only, subject to the two constraints that

the real part is identically satisfied at k = 0 and _. The resultant

CL/ is then predicted at intermediate k values. Noreover it is assumed

that the b i, which are the poles o_ the aerodynamic transfer function (see
eq. (3)), are independent of the particular generalized focoe and moti_l and
are inherent characteristics of the dynamics of the fluid. Vepa anticipated
this assumption would be useful but did not pursue it. The prooedure is shown
in this paper to give good results. Du_n (ref. 9) has adopted this assumption

partially _ usirig the same bi for each distinct type of motion, e g., hea_qe
and pitch.

v*

1980024850-005



Pot completeness, P_xjer's prooedure is also briefly des_ibed here

{refs. $ and 6). & maxlmm value of reduced frequency kaa x is selected which
is an upper limit on the frequency ranqe of interest, lext the bi are chosen
as

i
bi =-- (i = O, 1, 2, 3, . ., I}

I k_x

The a i are then determined by a least-squares procedure usinq both real and
imaginary parts of the aerodynamic transfer functions (matrix elesents).
&nothe_ characteristic of Boger's prooedure, though not absolutely e, sential,
is that the prooedure is applied to the aerodlmamic infl,;enoe matrix relating
pressure to downwasb_ rather than to the matrix relatinq qeneraliz_d fo¢ces to
generalized _ordi_t< ;. Th_s autnmatically insures all m0tio_ and resultent
aerodynamic :_o¢ces are treated on a camion basis. Finally, the limits k _ 0
and k _ m i_e not enfo¢oed as oonstraints in itoger's method. J_el (ref. S)
has modified _ger's method to enfo¢ce the constraints at k = 0.

Frcm both s theoretical and practical point of view, it is better to select
only the baaginary part o_ the aerodynamic transfer function to constrl_-t the
representation and to allow the real part to be predicted. From a practical
point of view, this apt_oach provides an internal check against: (1) n,--'erical
errors in the frequency-domain data and (2) deviations of aerodynamic data from
linearity in the sotion i_ they are taken fros experinent or finite-difference
calculations. From a theoretical point of view, t_ real and iaa_jinary parts
are those associated with a single time-dependent function. Thus, constructing
a valid representation of the iaaginary part is sufficient to insure a valid
representation of the real part. In principle, of oourse, an alternate approach
is to construct t_e representation using the real part of the aerodynamic trans-
fer function and .ocedict the imaginary part. It will beo_Ae clear in the fol-

lowing examples, however, why this alternate approach is not the preferred
choi ce.

I"MOOIG'I_SS13_r_ ff.,OM

For linear, potential, incompressible, two-diaensional flow, the fluid
unstea6iness is characterized in the frequency domain by a single function,
the Theod_rsen function C(k). It is related to the Wagner function _ which
is the tilt due to _ step change in dbwnwash at the airfoil three-quarter chord
(u_ually said to be a step chan_e in angle of a_tack) through a Fourier trans-
focm pair (refs. 1 and 2), i.e.,

I C(k)
eikt dk¢'r) -- -- (5)

2_ ,- ik

5
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g

C(k.) - Ik S_(_)e-ikT d_ (6)

Following the basic approach, ass,me that # may be represented by

_(T) • _ ai ebiT
(T > 0) (7s)

i=I

+(T) = 0 (T < O) (?b)

Usin9 equations (E} and (7), the corresponding representation of Theodorsen's
Function is

I

C(k) = _ ikai (8)
(-b i + Ik)

iIl

Or, in terns of its real and imaginary oomponents C = F + JG,

F = _ aik2

'2 b_ + k 2 (,a)
i=l

I

aibi k

G = -_ b_ + k2 (SYo)i=l

The _requ_mcF-damain resu,;ts for F and G are well known (refs. I and 2)

and are shown as dashed lines in figure 1. The q_.stion is how to determine a i
:rod bi. First consider the a i. As k �0,r and as k F + 1/2.
These limits are well known foe any aerod_q,amic theory, since k is the

6
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steady-flow limit and k " = is given in general _though not for N - O) by
the piston theo(y (refs. _ and 2).

;_equirin9 equation (9a) to satisfy these II_its means _ - 6 and
a1 - F(k=0) = 1 so that

al + a2 + • • • - F(k=.) = 1/2 {10)

Consider now equation, (gb) and, fo_ sbmplicity, let I = 2 so that only b2
remains "o be determined. There are various ways this night be dk)ne, e.g.:

(1) Collocation, i.e., require b 2 to be such that equation (9a) or (9b)
is exactly satisfied at m intermediate k

0<k<=

(2) Least squares, i.e., require equation {ga) an4/or (9b) be satisfied
in a least-equates sense

Strictly, this second approach leads in general to a nonlinear equation for

the b i. Vepa (ref. 7) avoids this difficulty by rewriti_ equation (8} as
a ratio of two polynomials=

m(ik)
C(k) =- (lt}

D(ik)

and then multiplying equation (11) through by D, i.e.,

D(Ik)C(k) = N(Ik) (12)

before applying the least-_quares procedure to determine the ooe_flclents !_n the
pol_nominals of N and D. This aptoroach _oes lead to linear algebraic equa-
tions for these coefficients. While the ixocedure put forward below is no more
rigorous fundamentally than that of Vepa, it avoids two objections whl-.h might
be raised about Vepa's Ixocedure. First, the bi retain their Individual
identity and are not lost in cmpllcated expressions for t_m pollm_mial coef-
ficients of 14 and D; second, equation ($), or actually equation (gb), is

satisfied in a least-squares sense (to determine a i) and not the m_di_le-3
equation (12). Satisfying equation (12) in a least-squares sense gives undue
weighting to high k values.

The procedure suggested here for deternining b2 is siaq)le. For I = 2,
since b1 = 0,

7

I

1980024850-008



a2b2k
m ill

G ,, b22 �k2(1 3)
m

Mow G = 0 at k - 0,_ (which eq. (1t) already satisfies) and has an extremus
at k = 0.2. (See fig. 1.) _ju_.tion (1J) has a_ extremum, using elementary
calculus, at

k = ±b 2 (14)

Hence, select b2 = -0.2s the minus sign gives the correct sign of G and
also provi4es a stable aerodynellc system. The corresponding approxLsants to
F and O are shown as solid lines in figure I along with their exact counter-
parts. The agrement is reasonable, though certainly imperfect.

The approxJJumt can be Isqxoved by increasing I. The question then

becomes how to determine the other bi. If there were several extrema for G
(and they were well separated as is typical for the ismglnary parts of aero-
dymmic generalized forces when multiple peaks occur), then a value of bi
would be selected to be equal to the -k value at each p_.ak. In the present
ex_ple, however, since no other extrema are present, additional bi are
simply added on either side of -0.2 to improve the approximation. In figure 2,

results are shown for bI = O, b 2 - -0.1, b3 = -0.2, and b4 = -0.4 and in
figure 3 for b1 = 0, b2 - -0.05, b3 - -0.2, and b4 = 0.6. Note that the b i
on either side of an extreBus are chosen here by inspection and iteration. This
sispltfies the procedure but presumably incurs sole loss of accuracy compared to

determintn_ the b i as part of a least-squares solution proceddre. The cor-
responding a I were determined, after the b i were selected, by a least-
squares fit to equation (gb) fo_ a selected n_ber of k values subject to the
constraints of equation (10). The procedure is standard using Lagrange multi-
pliers to invoke the constraints, and the details are ositted. Up to 27 val_es
of k were used, although 15 gave essentially the same results and as few as 5

gave reasonable results.

The relxasentations of figures 2 and 3 are much improved over those of
figure 1, with those of figure 3 being somewhat better than those of figure 2.
They could be i=Ixoved further by increasing I. H(_eever, this seems unneces-
s_ry_ instead, _parisons with alternative representations are considered.

The wel!-knoen representation of Jones (refs. 1, 2, and 4) is shown in fig-

ure 4. This corresponds to I = 3 with b} = 0e b2 = -0.0455, b 3 = -0.3 in
the present model, but the a i were not determined by Jones using a least-
squares procedure. Using Jones' values of the bi and a least-so_uares proce-
dure to determine the a i changes the deta;ls of the representation, although
it is not noticeably l_proved. (See fig. 5.) Thus, it is concluded that Jones'

approximant is less accurate than _be present I = 2 approxiaant; the basic
reason for this is the n_abe.r and choice of poles.

8
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In figure 6 the bi are chosen fr_ Deslarais' continued fraction repre-
sentation (re_. II) of Theodorsen'r :_wtlon for I = 4 (to t_ dlsc,:_:. _ ,'ur-
ther in following sections). The results are conl_rable to t_>s-..-.;_';n e&: ,.,_

for I = 4, but are not better as far as on_ can Judge. Flnally, _'- _hould _,
noted that Veps (ref. 7) uning h_s ._ore elaborate _oceduLe :,as also obtained
excellent representations of F and G,

The quantity b_ is assumed to be te._, alt_ough from a sethenati_l point
of view0 complex cen;_,ga_.e pairs are petsissible. Also, all po:es are assumed

to _, simple ones, e.g., no double poles. Cosple% and double poles were inves-
tigated n,nertcatly, but _heir inclusion ga,t-_ no noticeable lmprovaent. This
result is consistene. "ai(:h Desgarais' cov:inued f_.action representation which
shous that only siBple poles exist alm._ the negative, imaginary k-plane axis to
any order of approximation. Also, see the discussi>n o_ Edeard_ in reference 3.

Cont';nued Fraction Representaeion

Let us now turn to a brief review of the very interasting results of
Dessarais (ref. 11) for the support they lend to the adlittedly heuristic
procedure descrlbe¢: _bove. Desmarais has establishe_ the following continued
fraction representation of Theodorsen's function:

(-1/2)
C(k) = 1 *

1
1 +

14k +1

3
1 +

14k + 3

5
1 +

14k + 5

I . .

This infinite fraction _aay be truncated to obtain approximations of various
orders, and Desmarais has developed convenient recurslon formulas for these.
At any order of approximation, C(k) is represented by a r_tio of polynomials.
All oE the poles are along the negative imaginary k-axls (corresponding to
negative, real bi), i.e., the branch cut of Theodorsen's lunch.ton. The _x)les
become inflnitely dense as the order of the approximation is ir_reased. The
contin_ed _ractlon representation converges everywhere in the cc_.olex k-plane
except along the branch cut. Thus, Thsodorsen's _un_tion .has no poles, except
possibly along the branch cut.

I
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The ixacticel =lgnificance of the above results is that, altho,_ in fact
there are no poles of C (k), one may expect to obtain an aplxoximatior, ot
any desired accuracy by reWesentin f C(k) as a rational function whose poles
are all along the negative, bmagl;lary k-axis.

Fo_ additional discussion of the continued fraction erode1, see Desaarai_
(ref. 11). Even t_ough there is no knoun counterpart for c_mpresstble flow, It
is possible a similar situation exists. For subsonic flow, at small k the
aerodynamic forces behave very much as for in_pressible f'low, while for large
k the aerodynamic forces rill mlmptotically apixoach those of "piston theory."
Finally, |t is worth mentioning that, for a give_ nueber of poles the least-
squares prooedure uay be used to obtain a bottar match with the true C(k) than
the oontinued fraction repre_.ntatton (ref. 11). This is not to say that the
latter is, in general, inferior to the focs*-_. Indeed, Just the opposite is
true, as w_ll be clear to the reader. It is simply to say that for the purpose
of providin_ -_._ a_curate relxesentation of C(k) by a ratio of polynomials, a
better numerical fit can be obtained using the least-_quares procedure than that
given by any specific or&_r trunca'ion of t_ continued fraction relxesentation.
It is the fact that the latt_.r stay be. used _o generate a systsm,ltic and conve_9-
ing rel_esentation of any order, as well as the theoretical support it gives for
t._ least squares method, which underscores its fundamental importance.

Wag;;er Function

Once the ai,b i are known, one has a representation of the Wa_Jner func-
tion from equations (7). Results were obtained for the I = 2 approximant (of
fig. 1) and the better of the two I = 4 approxiAants (of fig. 3). For the
I = 4 representations whose results are shown in figure 3, the corresponding
Wagner function representation is indistinguishable from published results
(refs. | and 2). By contrast, the I = 2 result is somewhat different and it

is shown along with the exact result in figure ?. Figure 7 and its co_resa-
lble co_nterpart_ are the ultimate results of the present procedure. The excel-
lent agreement between the I - 4 approxi_ant and the exact result is very
satisfying.

_PLI_TIOH TO t_OM_PJ_SIBI_

Now let us turn to the effects of COml_essibility. _h,o examples will
be considered. They are a two-dimena_.onal _lat plate at N • 0.? and an
l_Ca 64N)06 airfoil at N = 0.84. The numerical data are, respectively, from
classical aerodynamic theory, which ass,,,es an infinitesimal perturbation about
a uniform mean flo_, and the transonic aerodynmlc theory of Hillims (rare. 12
and I 3), which considers an infinitesimal _ynasic perturbation about a non-
uniform mean flow including a shock wave. The shock motio_ due to the airfoil
motion is also taken into account in Wiiliasa' theory and is consistently
treated as infinitesimal.

10
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Flat Plate at M = 0.7

For the flat plate at M - 0.7, the lift and moment (abo,t midchord)

due to heaving and pitching (about mldchora)are considered. Hence, four

aerodynalic transfer functions are c_apu_d: CL_/u, C-,, CM_/U, and CMa.

These are shown in figures 8, 9, 10, and 11 along with an eight-term (pole)

representation using the present _ethod. The bi were chosen from an examina-

tion of the lJaglna_y parts of CL_/_I, CLa, CM_/U, and CMa, In general, it

is found that the extre_a of the imaglnary parts of these functions occur at

the same k values, l_wever, they are more distinct for some functions than

for others. FoL e_-'_4_le,compare _//CL_/u_I in figure 8(b) to .(CI_3/ in fig-

ure 9(b). The latter actually offers a better definition of the extrema than

the former. The bi are as follows:

t_-0

b 2 = 0.03

b3 = -0.1 (where imaginary part has one extremum)

b 4 = -0.3

b5 --0.8 (where imaginary part has a near extremum)

b 6 = -1.2

b7 "-1.75 (another extreuum)

b 8 = -3.5

The corresp_dlng _i are given in table I. TE_ results shown are good repre-

sentations and no others were studied; hcMever, moderate changes in the bi
values and even a reduction Jn their total number would probably still lead to

satisfactory results. These bi were, in fact, suggested _v the results for
the second example, which chronoloqlcall_ were obtained first. It should _e

noted here that the results for CM_ at high k are even better than indi-
cated as the dominant piston theory-terN has been subtracted out. ,_ee subse-

quent discussion following the next example.

Using the above results, the aerodyn_Ic indlcial fu_ctlons ,_ere com_uted.

These are shown in figures 12 and 1 3. The definitions of the var[oua aero-

dynamic terms are:

h/U ratio of heaving velocity to free-stream velocity

angle of pitch

11
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cT ---Lm b

C M -- M/pU2b2

where L and M _e di=ensional lift and moment, respectively, about midohord

and b is the dimensional h_f-chord. As with the inccmpreszible counterpart,

the Wagner function, figures 12 and 13 ate the ult_.mate results of the imesent

method. They are the time histories the experimentalist :_uld measure and the

inputs to the ._e_.oelastic an's equations of Notion. At short times (correspond-

ing to high fr_qenc/es) the results are expected to be less accurate, even

though at • = 0 the results _:e exact because of the enforoement of i_e _iston

theory constraint in tt_ frequenc.y d_ain as k �_.

Th(- previously publishe_ values (ref. ]) of indicial aerodynamic funcT.ions

for pitch and moment about the. qmn'_er-chord are avail_ble in a scmswhat dLT-

ferent form. For heaving, the nondimensonal lift and m_mlt are defined by

: L

_c -
PU2

2. -_- (2b)_

M

_om-
OU2

2, -_- (2b)2hU

For pitchirg, the published results are for a step change in pitching velocity,

but zero pitch angle - a mathematically well defined but physically artificial

motion. No comparisons were made for this case since com_arisons of th- results

for heaving which are shown in figure ]4 were so encouraging. Not£ that not all

of the differences between the present results and those previously published

should necessarily be attributed to inaccuracies in the present approach. See

Ashley's discussion on pages 347 to 350 of reference ], as well an the original

papers cited in reference ]. Also see Edwards (ref. ]4).

Vepa (ref. 7) has made a similar comparison to published results using his

procedure for M = D.5. Similar agreement (and differenu_s) were noted.

NACA 64A006 Airfoil at M = 0.84

[_he example of an NAC_% 64A006 airfoil at M = 0.84 motivated the present

. work and, in fact, was completed first. Hence, it is considered in somewhat

more c_tail, including a study of the effects of number of terms retained in

the e_ponential time-history representation and, also, the number of k values

used in the least-squares determination of the coefficients of the exponentials.

]2
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A. R. Seebass, ] of the University of Arizona, has also noted the effectiveness

of such representations for transonic aerodynamics.

In figures 15 to 18 the transfer function_ are shown along with represen-

tations obtained by the present method. Consider figure 15 first. Results are

shown for eight and _our term representations; and, for the latter, 17 and 28

k values are used for the least-square- appruximation. These results give an

indication of the senl_itivity of the method to changes in these parameters. The

bi are the same as those used in the M = 0.7 flat-plate example, and the a i

are given in table II.

It is clear from (._mparing the results of figures 15 to 18 to each other
and to the earlier results for M = 0 and 0.7 that

(1) More terms are required at the higher M to obtain a good

representation.

(2) More terms aze required for pitching than heaving motion.

(3) More terms are required for moment than for lift.

These conclusions are intuitive but, nevertheless, important.

Consider in particular the results of figure 18 for moment due to pitching.

There is a substantial degradatinn of the representation at high k values as

the number of terms retained in the representation is reduced from eight to

four. The effect is exaggerated, however, because in figure 18 (as in fig. 11

for M = 0.7) the piston-theory contribution (r_fs. I and 2) which is dominant

at high frequencies has been subtracted out. The piston-theory contribution is

given by

PT /4

For a step change in e, this gives a delta function at I = 0 which is sup-

pressed in the present presentation of the results. For simple harmoDic _tion,

this gives

PT 4

C = - -- Ike ik_ (_ = e ik_)
M _M

which clea_ly dominates for high k over the residual shown in figure 18.

]In private communication with the author.

I
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Finally, consider the in,3icial functions which are displayed in fig-

ures ]9 to 22. They are shown for both a four-term and eight-term approxi-

mation using 28 k values. Comparing these results to those for M- 0.7

(cf. figs. ]2 _n_ 13), it is seen the indicia1 lift behaves in a rather similar

fashion. Euwever, the indicial mo.T.ents are different and generally smaller in

magnitude. This fact may explain the relatively greater difficulty of obtaining

a good representation of the moments at M = 0.84 com_mared to M = 0.7. There

are, of course, no previously p_lished results to which those of figures ]9

to 22 may be compared.

Using his procedure for supersonic and transonic flow, Vepa (ref. 7) main-

tains "for higher order approximants the poles behaved in an erratic manner,

often moving into the right half of the sl= ik] plane." Although Vepa sug-

gested a possible way of overcoming these problems, the present procedure by

its n_tu_e avoids the difficulty. Roge: (ref° 6) has also noted this behavior

in his work and chooses the bi to be. negative to avoid the problem. Durra

(ref. 9) allows both a i and b i to be determined optimally in a least-squares

series but _oes ir_oke the constraints that the bi be negative.

CONCLUDING R_MARKS

A simple, direct procedure is suggested for converting frequency-domain

aerodyn_,ics into indicial aerodynamics° The time-domain presentation is in

the form of a sum of exponentials. Examples for classical incompressible and

subsonic, compressible flow suggest that known results can be reproduced accu-

rately. Ne,I results are presented for transonic flow based upon Williams'

frequency-domain theory (AIAA J., vol. ]8, rio. 6, Jtme ]980). All examples

studied are two-dimensional; _owever, no difficulty is expected in treating

three-dimensional flows where the appropriate frequency-domain aerodynamic

representations are available.

Not unexpectedly, it is shown that more terms are required in the repre-

sentation for (1) higher transonic Mach numbers (though presumably for suffi-

ciently high Mach numbers this trend reverses), (9) pitching compared to heaving

motion, and (3) moment compared to lift.

Langley Research Center

National Aeronautics and Space Administration

Hampton, VA 236_5

August 14, 1980
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TABLE I.- _C TRANSFER I_NCTIGRS FCR

A FI_T PI_TE AT Pl = 0o7

bi

a] 8.798 8.798 4°41 (. 41 0

a2 -1. 361 3 -1. 054] -.5378 -I. 0241 -. 03

. a3 i -2.]095 -2.5259 -_..6484 -.1414 -.I

a4 i -3. 2864 -I. 60 87 .0058 -5. 2324 -. 3

i

a5 ]4.8169 5.2806 -.0369 42.879 -.8
I

a6 -29.5748 -3. 5559 -5. ]654 -] 02. 021 2 -1.2
!

a7 I 23.2814 4.493 2.4296 76. 506_ -1.75

a8 ! -4.8503 -4.1129 .5431 -]5.3762 -3.5
I
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_3_BI_ If.- AEROD3EN&NIC TR&_SFER FII_C?IONS

N&CA 64A006 AIRFOIL AT X = 0.84

' I 1 1 ]"i I CL_/u % C_,,U C_ _1_,
,J bi

Four terms

aI a9.2 9.2 0 0
bg. 2 0

a 2 a-5.8886 -4.9091 1.7081 .7379
b-5. 981 5 -. 1

a3 a_. 0909 3.1 026 -2. 2094 -4. 8973
b_. 5006 -. 8

a4 al. 541 5 -2. 631 4 .5012 4.1594
b2. 0442 -I .75

Eight terms

a I a9.2 9.2 -0.! -0.1 0

a2 .550] 1. 3655 -. 31 35 -I. 3147 -.03

a 3 -5. ]476 -6. 384 I.6297 3.0863 -. I

a4 -2. 4487 ]. 3039 .379 -3. 098] -. 3

a_ 5.1096 -17.141_ -.2292 20.9301 -.8

a6 -7.8209 45.251 9 -3. 922 -54. 9848 -1.2

aa78 7.8616 -34.5566 1.7436 43.1282 -1.75
-2. 5421 5.7225 .81 25 -7.6470 -._•5

a28 values with kma x = 3.75.

hi7 values with kma x = 1.0.
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Ey_act

_-Approxt mare

7 \
• \\

.5 I I l I I 1 I I _ _-']
0 .2 .4 .6 .8 l.O 1.2 1.4 1.6 1.8 2.0

k

(a) Real pact.

- .25

- .20

,1 i 1 1 I I I I J
0 .2 .4 .6 .8 1.0 1.2 1.4 1,6 1.8 2.0

k

(bl ImaginarY l_arL.

Figure 1.- Theodorsen function for I - 2, b1 = 0, b2 - -0.2, a 1 = 1.0,
a2 = -0.5.
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L0

.9 / .... Eu_

k

(a) Real pare.

-.20

-.|0

-.0

k

(b) ZmagLnary part.

Fiqure 2.- Thecdorsen function for I = 4, bl - 0, b2 = -0.I, b3 = -0.2,
b4 = -0.4, aI = 1.0, a2 = -0.3S76, a3 = 0.1417, a4 = -0.2841.
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(a) Real part.

(b} Imaginary part.

F_gure 3.- Theodorsen function fo_ Z - 4, bI _ 0, b2 - -0.05_ b3 - -0.2,
b4 _ -0.6, aI - 1.0, a2 = -0.146S, a3 = -0.2435, a4 - -.0.1100.
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0!.9
_ J,mi's ° _ppri_xlq,_n_

! ! 1 I I I ! l J"So ., .4 ._ .8 1.o i., ,.4 1.o 1.8 _o
k

(a) Real part.

-.25

..201

-.10

- .05

I J _ l _ J l l I I
0 2 .4 6 .8 l.O 1.2 1.4 1.6 1.8 2.0

k

(b) I_aginary part.

Figuro 4.- ?heodorsen function for I = 3, bI = 0, b2 = -0.0455, b 3 = -0.3,
aI = 1.0, a2 = -0.165, a3 = -0._35.
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I0

_l t t t t 1 I 1 1 I
.2 .4 .6 .8 t.o 1.2 !.4 t.6 t.8 2.0

k

(b) Imaginary part.

Figure 5.- Theodorsen function for _ = 3, bI = 0, bI _ 0, b2 = -0.0455,

b3 - -0.3, aI - 1.0, 12 = -0.1740, a3 _ -0.3166. (ai calculated by
least-squares proceOure.)
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---- Exact

.9 _ Approxlmant for I = 4
USing D_smarais' poles

.5 I i i I I I I I I

.2 .4 .6 .8 1.0 1.2 1.4 1.5 1.8 2.0

k

1_1 Real part:.

-.25 I
- .20

-.15

13

-,10

i I I I I l ; I I l
0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0

k

(b) Imaginary part.

Figure 6.- Theodors_-n function for I = 4, bI = 0, b2 = -0.0594,

b3 = -0.2536, b4 = -0.65]9, a] = 1.0, a2 = -0.187.3, a3 = -0.2358,

a4 = -0.0769. (ai calculated by least-squares procedure.)
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Figure 7.- Wagner function.
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4_ t_ I++I_iII-tt'rnl rt, llre,,t',It,lt non A_.Xnlptote-_

0 I 2 3

k

(a) Real part,

++

1

A_vmpt +

CL

I

t} I 2 3

k

(b) Imaginary part.

Figure 8.- Lift due to hec +ng for a flat plate at M = 0.7. 25k values,

kma x = 3.0. (See table I for values of a i and bi. )

25

IL_,

1980024850-026



_. 10 --

)

5 - 0 _ight-termrepresentation

-_,Class,cal theory

i i i _ I A I a * I i l I I J
0 1.0 2.0 3.0

k

(a) Real part.

2 -

I- 0 0

-2 _ I , , , I , i i l I , A i
1.0 2.0 3.0

k

(b) Imaginary part.

Figure 9.- Lift due to pitching for a flat plate at M = 0.7. (See table I for

values of ai and hi.)
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-- Classical theor3"

0 Eight-term repre._entat aon

0 0

- 5 _.____.._.L_..,_ L 1 , A , , I , A , * I
0 1.0 2.0 3.0

k

(a) Real part.

1-

0

1

-2 , __L A * J I * , A l , * L i J
(1 1.0 2.0 3.0

k

(b) Imaginary part.

Figure ]0.- Moment due to heavxng fOE a flat plate at M = 0.7. (See table I for

values of a i and b i.)
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) Cta.'<s.'al theo_'

0 Etghl-ll.,r|ll reprrsr,tlat ion

++,.._

(?/[ ooo

-5C I 2 3
k

(a) Real part.

l-

II

-1

-2 , , , 9 --_ .... f , , • _ _J
0 1 2 3

k

[b) Imaginary part.

0.7.
Figure ]I.- M_ent due to pltrhl,Jg for a flat plate

at M

(Se_ table I for valuea of ai and bi.)
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•_<V Mptote --_1.4

r

,6--

.4 ___ I ._________.Z.____ _J_____. J J 1 I
0 4 8 12 16 20 24 28

V
-0.30- -- Classwal theory

| O F,_ht-term r_pr_sentat |on

_," ; -0.2_

_._ c 4_0 11_ _

l I I 1 .... 1 J I
2 4 _ 8 I0 12 14

Figure 14.- Indicial llft and moment for heaving of a flat plate at M = 0.7.

(See table I for values of ai and hi.)
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l0 O E_t:ht terms: 28 k 'talues: kma.. ' 3.75

[] I-our term:,: 2R k values: kma x 3.75

.A. Four terms: 17 k '.alues: kma x 1.0

) -- - M 0.84: WdlJams" theo_

0 1.0 2.0 3.0 4.0

k

{a) Real part.

5 -

I ,_ 2 0 3 0 4.0

k

(b) Imaginary part.

Figure 15.- Lift due to heaving for an NACA 64&006 airfoil. (See table II for

values of a i and bi.}
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10 0 l.Teh! h, rms

n Four tl.rtus

M 0 84; Wzlham_' [h_'orx

_.

0 I 2 3 4

k

(a) Real part.

1 2 3 4

k

(b) Imaginary Fart.

Figure 16.- Lift due to pitching for an hi,CA 64A006 airfoil. (See table II for

values of ai and b_.)
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[
O _It:ht term.,;

I [] Four terms

M 0.84, Wzlilams' lheo_"

[3

IA,l ° ° ° o0 o FI ID---_-I-_

0 _"

0 0 0 0 0 0 0 0 0

-1 I ' I A I l I I A _.L_ J I A I I .... I I
0 1 2 3 4

k

(a) Real pact.

't

\ -_-_& o

1 2 3 4

k

(b) Imaginary part:.

Pigure _7.- Moment due to heaving for an NACA 64A006 airfoil. (See table IX for
values of ai and b i.)
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L-

.6 I -- li,| = 0.84. Wl|llJms' theory

i O Eight term.*,

.4 _ 1"7 Four terms

o( n

l ,,l _.,
\--T-I o o o o

°.4 --

-.6-- 13 13 [] []

0

-1.o - [] O
O

-1.2 O D

-1.4 ' l D 13 f3 I , , , _ 1 , _ , , I
0 I 2 3 4

k

(a} Real part.

12 F

I L J ©

'; - / _ 13 [] O 1-3 [] O

" " i D _/

0 I 2 _ 4

k

(b) Imaginary part.

Figure 18.- Moment due to pitching for an NACA 64&006 airfoil. (See table II for

values of ai and bi.)
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